@Asynchronous Methods



Example async-methods can be browsed at
https://github.com/apache/tomee/tree/master/examples/async-methods

The @Asynchronous annotation was introduced in EJB 3.1 as a simple way of
creating asynchronous processing.

Every time a method annotated @Asynchronous is invoked by anyone it will
immediately return regardless of how long the method actually takes. Each
invocation returns a [Future][1] object that essentially starts out empty and will
later have its value filled in by the container when the related method call
actually completes. Returning a Future object is not required and @Asynchronous
methods can of course return void.

Example

Here, in JobProcessorTest,

final Future<String> red = processor.addJob("red"); proceeds to the next statement,
final Future<String> orange = processor.addJob("orange");

without waiting for the addJob() method to complete. And later we could ask for the result using the
Future<?>.get() method like

assertEquals("blue”, blue.get());

It waits for the processing to complete (if its not completed already) and gets the result. If you did
not care about the result, you could simply have your asynchronous method as a void method.

[Future][1] Object from docs,

A Future represents the result of an asynchronous computation. Methods are
provided to check if the computation is complete, to wait for its completion, and to
retrieve the result of the computation. The result can only be retrieved using
method get when the computation has completed, blocking if necessary until it is
ready. Cancellation is performed by the cancel method. Additional methods are
provided to determine if the task completed normally or was cancelled. Once a
computation has completed, the computation cannot be cancelled. If you would like
to use a Future for the sake of cancellability but not provide a usable result, you can
declare types of the form Future<?> and return null as a result of the underlying
task

NOTE

The code


https://github.com/apache/tomee/tree/master/examples/async-methods

@Singleton

public class JobProcessor {

@Asynchronous

@Lock(READ)

@AccessTimeout(-1)

public Future<String> addJob(String jobName) {

// Pretend this job takes a while
doSomeHeavyLifting();

// Return our result
return new AsyncResult<String>(jobName);

private void doSomeHeavyLifting() {
try {
Thread.sleep(SECONDS.toMi11is(10));
} catch (InterruptedException e) {
Thread.interrupted();
throw new IllegalStateException(e);



public class JobProcessorTest extends TestCase {
public void test() throws Exception {
final Context context = EJBContainer.createEJBContainer().getContext();

final JobProcessor processor = (JobProcessor) context.lookup("java:global/async-
methods/JobProcessor");

final long start = System.nanoTime();

// Queue up a bunch of work

final Future<String> red = processor.addJob("red");

final Future<String> orange = processor.addJob("orange");
final Future<String> yellow = processor.addJob("yellow");
final Future<String> green = processor.addJob("green");
final Future<String> blue = processor.addJob("blue");
final Future<String> violet = processor.addJob("violet");

// Wait for the result -- 1 minute worth of work
assertEquals("blue”, blue.get());
assertEquals("orange”, orange.get());
assertEquals("green", green.get());
assertEquals("red", red.get());
assertEquals("yellow", yellow.get());
assertEquals("violet", violet.get());

// How long did it take?
final long total = TimeUnit.NANOSECONDS.toSeconds(System.nanoTime() - start);

// Execution should be around 9 - 21 seconds
// The execution time depends on the number of threads available for
asynchronous execution.
// In the best case it is 10s plus some minimal processing time.
assertTrue("Expected > 9 but was: " + total, total > 9);
assertTrue("Expected < 21 but was: " + total, total < 21);

Running

Running org.superbiz.async.JobProcessorTest
Apache OpenEJB 7.0.0-SNAPSHOT build: 20110801-04:02



http://tomee.apache.org/

INFO - openejb.home = G:\Workspace\fullproject\openejb3\examples\async-methods

INFO - openejb.base = G:\Workspace\fullproject\openejb3\examples\async-methods

INFO - Using 'javax.ejb.embeddable.EJBContainer=true’

INFO - Confiquring Service(id=Default Security Service, type=SecurityService,
provider-id=Default Security Service)

INFO - Configuring Service(id=Default Transaction Manager, type=TransactionManager,
provider-id=Default Transaction Manager)

INFO - Found EjbModule in classpath: g:\Workspace\fullproject\openejb3\examples\async-
methods\target\classes

INFO - Beginning load: g:\Workspace\fullproject\openejb3\examples\async-
methods\target\classes

INFO - Configuring enterprise application:
g:\Workspace\fullproject\openejb3\examples\async-methods

INFO - Confiquring Service(id=Default Singleton Container, type=Container, provider-
id=Default Singleton Container)

INFO - Auto-creating a container for bean JobProcessor: Container(type=SINGLETON,
id=Default Singleton Container)

INFO - Configuring Service(id=Default Managed Container, type=Container, provider-
id=Default Managed Container)

INFO - Auto-creating a container for bean org.superbiz.async.JobProcessorTest:
Container (type=MANAGED, id=Default Managed Container)

INFO - Enterprise application "g:\Workspace\fullproject\openejb3\examples\async-
methods" loaded.

INFO - Assembling app: g:\Workspace\fullproject\openejb3\examples\async-methods
INFO - Jndi(name="java:global/async-
methods/JobProcessor!org.superbiz.async.JobProcessor")

INFO - Jndi(name="java:global/async-methods/JobProcessor")

INFO -
Jndi(name="java:global/EjbModule100568296/0rg.superbiz.async.JobProcessorTest!org.supe
rbiz.async.JobProcessorTest")

INFO - Jndi(name="java:global/EjbModule100568296/0rg.superbiz.async.JobProcessorTest")
INFO - Created Ejb(deployment-id=org.superbiz.async.JobProcessorTest, ejb-
name=o0rg.superbiz.async.JobProcessorTest, container=Default Managed Container)

INFO - Created Ejb(deployment-id=JobProcessor, ejb-name=JobProcessor,
container=Default Singleton Container)

INFO - Started Ejb(deployment-id=org.superbiz.async.JobProcessorTest, ejb-
name=0rg.superbiz.async.JobProcessorTest, container=Default Managed Container)

INFO - Started Ejb(deployment-id=JobProcessor, ejb-name=JobProcessor,
container=Default Singleton Container)

INFO - Deployed Application(path=g:\Workspace\fullproject\openejb3\examples\async-
methods)

Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 13.305 sec

Results :

Tests run: 1, Failures: @, Errors: @, Skipped: 0



[INFO] ------mmmmmm oo
[INFO] BUILD SUCCESS

[INFO] ----------mmmmmmmmm
[INFO] Total time: 21.097s

[INFO] Finished at: Wed Aug 03 22:48:26 IST 2011

[INFO] Final Memory: 13M/145M

[INFO] --------mmmmm oo

How it works <small>under the
covers</small>

Under the covers what makes this work is:

» The JobProcessor the caller sees is not actually an instance of JobProcessor. Rather it’s a subclass
or proxy that has all the methods overridden. Methods that are supposed to be asynchronous
are handled differently.

* Calls to an asynchronous method simply result in a Runnable being created that wraps the
method and parameters you gave. This runnable is given to an [Executor][3] which is simply a
work queue attached to a thread pool.

* After adding the work to the queue, the proxied version of the method returns an
implementation of Future that is linked to the Runnable which is now waiting on the queue.

* When the Runnable finally executes the method on the real JobProcessor instance, it will take the
return value and set it into the Future making it available to the caller.

Important to note that the AsyncResult object the JobProcessor returns is not the same Future object
the caller is holding. It would have been neat if the real JobProcessor could just return String and
the caller’s version of JobProcessor could return Future<String>, but we didn’t see any way to do
that without adding more complexity. So the AsyncResult is a simple wrapper object. The container
will pull the String out, throw the AsyncResult away, then put the String in the real Future that the
caller is holding.

To get progress along the way, simply pass a thread-safe object like [AtomicInteger][4] to the
@Asynchronous method and have the bean code periodically update it with the percent complete.

Related Examples

For complex asynchronous processing, JavaEE’s answer is @MessageDrivenBean. Have a look at the
simple-mdb example

[1]: http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html [3]:
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executor.html [4]:
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicInteger.html


simple-mdb.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executor.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicInteger.html

	@Asynchronous Methods
	Example
	The code
	Running
	How it works <small>under the covers</small>
	Related Examples

