
Schedule CDI Events

Example schedule-events can be browsed at
https://github.com/apache/tomee/tree/master/examples/schedule-events

This example uses a nice CDI/EJB combination to schedule CDI Events. This is
useful if you want CDI Events that fire regularly or at a specific time or calendar
date.

Effectively this is a simple wrapper around the
BeanManager.fireEvent(Object,Annotations…) method that adds
ScheduleExpression into the mix.

ScheduleExpression and @Timeout
The logic here is simple, we effecitvely expose a method identical to BeanManager.fireEvent(Object,
Annotations…) and wrap it as scheduleEvent(ScheduleExpression, Object, Annotation…)

To do that we use the EJB TimerService (under the covers this is Quartz) and create an @Timeout
method which will be run when the ScheduleExpression activates.

The @Timeout method, simply called timeout, takes the event and fires it.

1

https://github.com/apache/tomee/tree/master/examples/schedule-events

@Singleton
@Lock(LockType.READ)
public class Scheduler {

 @Resource
 private TimerService timerService;

 @Resource
 private BeanManager beanManager;

 public void scheduleEvent(ScheduleExpression schedule, Object event, Annotation...
qualifiers) {

 timerService.createCalendarTimer(schedule, new TimerConfig(new EventConfig
(event, qualifiers), false));
 }

 @Timeout
 private void timeout(Timer timer) {
 final EventConfig config = (EventConfig) timer.getInfo();

 beanManager.fireEvent(config.getEvent(), config.getQualifiers());
 }

 // Doesn't actually need to be serializable, just has to implement it
 private final class EventConfig implements Serializable {

 private final Object event;
 private final Annotation[] qualifiers;

 private EventConfig(Object event, Annotation[] qualifiers) {
 this.event = event;
 this.qualifiers = qualifiers;
 }

 public Object getEvent() {
 return event;
 }

 public Annotation[] getQualifiers() {
 return qualifiers;
 }
 }
}

Then to use it, have Scheduler injected as an EJB and enjoy.

2

public class SomeBean {

 @EJB
 private Scheduler scheduler;

 public void doit() throws Exception {

 // every five minutes
 final ScheduleExpression schedule = new ScheduleExpression()
 .hour("*")
 .minute("*")
 .second("*/5");

 scheduler.scheduleEvent(schedule, new TestEvent("five"));
 }

 /**
 * Event will fire every five minutes
 */
 public void observe(@Observes TestEvent event) {
 // process the event
 }

}

Test Case
A working test case for the above would be as follows:

import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import javax.ejb.AccessTimeout;
import javax.ejb.EJB;
import javax.ejb.ScheduleExpression;
import javax.ejb.embeddable.EJBContainer;
import javax.enterprise.event.Observes;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

/**
 * @version $Revision$ $Date$
 */
public class SchedulerTest {

 public static final CountDownLatch events = new CountDownLatch(3);

3

 @EJB
 private Scheduler scheduler;

 @Test
 public void test() throws Exception {

 final ScheduleExpression schedule = new ScheduleExpression()
 .hour("*")
 .minute("*")
 .second("*/5");

 scheduler.scheduleEvent(schedule, new TestEvent("five"));

 Assert.assertTrue(events.await(1, TimeUnit.MINUTES));
 }

 @AccessTimeout(value = 1, unit = TimeUnit.MINUTES)
 public void observe(@Observes TestEvent event) {
 if ("five".equals(event.getMessage())) {
 events.countDown();
 }
 }

 public static class TestEvent {
 private final String message;

 public TestEvent(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
 }

 @Before
 public void setup() throws Exception {
 EJBContainer.createEJBContainer().getContext().bind("inject", this);
 }
}

You must know
• CDI Events are not multi-treaded

If there are 10 observers and each of them take 7 minutes to execute, then the total execution time
for the one event is 70 minutes. It would do you absolutely no good to schedule that event to fire
more frequently than 70 minutes.

4

What would happen if you did? Depends on the @Singleton @Lock policy

• @Lock(WRITE) is the default. In this mode the timeout method would essentially be locked until
the previous invocation completes. Having it fire every 5 minutes even though you can only
process one every 70 minutes would eventually cause all the pooled timer threads to be waiting
on your Singleton.

• @Lock(READ) allows for parallel execution of the timeout method. Events will fire in parallel for a
while. However since they actually are taking 70 minutes each, within an hour or so we’ll run
out of threads in the timer pool just like above.

The elegant solution is to use @Lock(WRITE) then specify some short timeout like
@AccessTimeout(value = 1, unit = TimeUnit.MINUTES) on the timeout method. When the next 5
minute invocation is triggered, it will wait up until 1 minute to get access to the Singleton before
giving up. This will keep your timer pool from filling up with backed up jobs — the "overflow" is
simply discarded.

5

	Schedule CDI Events
	ScheduleExpression and @Timeout
	Test Case
	You must know

